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Abstract
A basic nonlinear two-state model generic in classical and bosonic field
theories with a cubic nonlinearity is considered. For the class of models with
constant external field amplitude a general strategy for attacking the problem is
developed based on the reduction of the initial system of equations for the semi-
classical atom–molecule amplitudes to a nonlinear Volterra integral equation
for the molecular probability. A uniformly convergent series solution to the
problem is constructed for the weak interaction limit. The Landau–Zener
model is considered as a specific example. The first approximation term is
derived and an asymptotic expression for the nonlinear transition probability is
established in the weak interaction regime.

PACS numbers: 32.80.Bx, 33.80.Be, 34.50.Rk, 03.75.Nt

1. Introduction

In the studies of photoassociation of a Bose–Einstein condensate [1], the following system of
semiclassical nonlinear equations describing atomic and molecular condensates as classical
fields has been derived [2, 3]:

i
da1

dt
= U(t) e−iδ(t)a2a1, i

da2

dt
= U(t)

2
eiδ(t)a1a1. (1)

Here a1 and a2 are the atomic and molecular states’ amplitudes, respectively, a1 is the complex
conjugate to a1, U = U(t) is the Rabi frequency of the photoassociating laser field and δ = δ(t)

is the corresponding frequency detuning modulation function. The same equations will come
up in an attempt to control the scattering length of an atomic Bose–Einstein condensate by
means of a Feshbach resonance [4] (the Rabi frequency is then proportional to the square
root of the magnetic-field width of the resonance, and the detuning modulation is proportional
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to the external magnetic field), in second-harmonic generation in nonlinear optics [5] (here
U is proportional to the second-order susceptibility of a lossless quadratic medium and δ is
the spatial phase difference between fundamental and second-harmonic waves), and generally
in field theories where the system Hamiltonian is of the generic form a

†
2a1a1. Because of

the nonlinearity, a physical system that is governed by these equations demonstrates very
complicated behaviour (this has been well revealed already in nonlinear optics studies—see,
e.g., [5]). Compared with the linear quantum two-state problem [6], system (1) presents a
much more complicated, qualitatively different mathematical problem (even in the simplest
case of the Rabi problem [6], when both the Rabi frequency and detuning modulation function
are constants, one faces essential complications [5], see also [7]) and at the present time, no
general analytic approaches for treating such systems are known. In this paper, we propose an
approach that is applicable to all the models with constant field amplitude. We demonstrate
the effectiveness of the developed approach by considering the Landau–Zener model [8].

Elimination of a1 leads to a second-order nonlinear ordinary differential equation for a2:

d2a2

dt2
+

(
−iδt − Ut

U

)
da2

dt
+ U 2(1 − 2|a2|2)a2 = 0, (2)

where U is assumed to be real.
System (1) possesses a first integral

|a1|2 + 2|a2|2 = IN = const. (3)

We are interested in the solutions of (1) that belong to the manifold IN = 1 and are defined by
the initial conditions |a1(−∞)|2 = 1, |a2(−∞)|2 = 0. This normalization is incorporated in
equation (2). The corresponding linear system has the form

i
da1

dt
= U(t) e−iδ(t)a2, i

da2

dt
= U(t) eiδ(t)a1, (4)

the associated second-order linear ordinary differential equation for a2 being (compare with
equation (2))

d2a2

dt2
+

(
−iδt − Ut

U

)
da2

dt
+ U 2a2 = 0. (5)

The first integral of system (4) is |a1|2 + |a2|2 = IL. Here of interest are the solutions that belong
to the manifold IL = 1/4 and satisfy initial conditions |a1(−∞)|2 = 1/4, |a2(−∞)|2 = 0.
The reason for this choice is that then the solutions of nonlinear and linear problems
asymptotically coincide at t → −∞.

We start with an important general observation that the solvable cases of system (1),
like the linear case, fortunately, form a certain class [10], as can be easily verified by direct
inspection. Namely, if the functions a∗

1,2(z) are a solution of system (1) for some U ∗(z) and
δ∗(z), the functions a1,2(t) = a∗

1,2(z(t)) are then a solution to (1) for U(t) and δ(t) given by
U(t) = U ∗(z) dz

dt
, δt (t) = δ∗

z (z)
dz
dt

. This property allows one to write down the solution for
any member of a class in terms of the solution for a certain basic representative of the class.
Hence, due to this kind of property the number of different models to be considered is reduced
to a handful of basic models. The Landau–Zener model subject to the treatment below is one
of such basic models.

Further, in order to examine the role of the nonlinearity, we present a heuristic comparison
of linear and nonlinear problems using the Landau–Zener model, U = U0 = const, δ = δ0t

2,
as a specific example of a model with constant field amplitude.

Linear solution. The Landau–Zener solution of system (4), often written using parabolic
cylinder functions [6, 8], can more conveniently be expressed in terms of the Kummer confluent
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Figure 1. The behaviour of the solutions to the nonlinear (solid line) and linear (increased four
times) Landau–Zener problems in the weak interaction regime, λ � 1.
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Figure 2. The behaviour of the solutions to the nonlinear (solid line) and linear (increased twice)
Landau–Zener problems when the nonlinearity is strongly expressed, λ � 1.

hypergeometric function 1F1 [9] as follows:

a2LZ(t) = C1F1 + C2F2, F1 = 1F1(iλ/4, 1/2, iδ0t
2), F2 = t1F1(1/2 + iλ/4, 3/2, iδ0t

2),

(6)

C1 =
√

λ e−πλ/4 cosh(πλ/4)
i

2

�(1/2 − iλ/4)

�(1 − iλ/4)
, C2 =

√
λ e−πλ/4 cosh(πλ/4)

√
iδ0, (7)

where � is the gamma function and λ = U 2
0

/
δ0 is the Landau–Zener parameter. The time

evolution of the probability for the second state, p(t) = |a2(t)|2, is shown in figures 1 and 2.
At t = +∞ we have the familiar Landau–Zener result

PLZ = 1 − e−πλ. (8)
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Nonlinear case. Initial intuitive insight into the problem is gained by examining
equation (2). As is seen, the nonlinearity is of a local character, i.e. it is determined by
the current value of the transition probability p(t). Hence, one may expect that if p(t) remains
small enough (note that because of the normalization constraint (4), p is always not more than
1/2) then the role of the nonlinearity is rather restricted. In this case, neglecting the nonlinear
term in equation (2), we get a linear equation that is simply satisfied by a scaled linear
solution: a2 = a2L/2. Now, the solution to the linear Landau–Zener problem (6) suggests
that the nonlinear term remains small for all the time if the final population probability of the
second state calculated from the linear solution is small. This is the case when the Landau–
Zener parameter is much less than unity. We thus conclude that in the limit of small λ, the
solution of the nonlinear problem is effectively the same as the scaled solution to the linear
problem.

Suppose next that the nonlinear term becomes large, of the order of 1. The speculations
above suggest that this is to be the case when λ � 1. Then dividing equation (2) by λ,
we see that the small parameter 1/λ now stands at the highest-order derivative. Hence, this
case is, generally speaking, of a singular nature and one may expect that the perturbation by
the nonlinear term will cause essential deflections from the linear behaviour. These general
speculations are further supported by numerical simulations. Qualitative comparison of the
nonlinear and linear solutions is shown in figures 1 and 2. As is seen, the behaviours of
the nonlinear and linear solutions are rather similar in the weak interaction regime: the
differences seem to be only quantitative. However, in the strong interaction case we face
essentially different asymptotes. Furthermore, the numerical simulations together with some
analytic developments reveal the following facts [11]:

(i) in the weak interaction regime when the nonlinearity is less pronounced, λ � 1, the final
transition probability can be presented as

p(+∞) ≈ PLZ(λ)

4

(
1 +

λ

π
PLZ(λ)

)
, (9)

(ii) in the strongly nonlinear limit, λ � 1, the final probability is approximately given as

p(+∞) ≈ PLZ(λ/2)

2

(
1 − 4

3πλ
PLZ(λ/2)

)
. (10)

Note that in the case of strong interactions, the final transition probability is interestingly
related to the linear Landau–Zener formula with the parameter λ replaced by λ/2. It should
be noted, however, that this is the case only for the final probability at t → +∞, not for the
intermediate time evolution of the system, see also figure 2.

Now, the examination of the structure of formulae (9) and (10) might suggest that the
nonlinearity presents a small perturbation, so that one may try to construct an approximate
solution to equation (2) as a power series expansion in terms of λ if the Landau–Zener
parameter is small and in terms of 1/λ in the opposite limit. However, these attempts to
treat the nonlinearity by direct perturbation methods using the corresponding linear Landau–
Zener solutions as zeroth-order approximations fail in both cases. It appears that the resulting
approximation terms diverge even in the limit of weak interaction. This is probably not
surprising at all, if we recall the experience accumulated in the study of nonlinear systems
(see, e.g., [12] and numerous references therein).

Indeed, consider, e.g., the variation of parameters method [12]. Accordingly, the first-
order approximation is written in terms of an arbitrary set of linearly independent fundamental
solutions u1 and u2 to unperturbed linear homogeneous equation as follows:

a2 = a2LZ(t)

2
+ λ

(
u2(t)

∫ t

−∞

u1(x)

W(x)
G(x) dx − u1(t)

∫ t

−∞

u2(x)

W(x)
G(x) dx

)
, (11)
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where W(x) is the Wronskian defined as W = u1u
′
2 − u2u

′
1 and G(x) is the inhomogeneous

term,

G(x) = 1
4 |a2LZ|2a2LZ, (12)

a2LZ being the above solution to the linear Landau–Zener problem. Now consider the pair of
independent solutions u1,2 = C1F1 ± C2F2, with F1,2 and C1,2 defined by equations (6) and
(7), so that u1 = a2LZ(t) and u2 = a2LZ(−t). At t → +∞ these functions have the asymptotes

u1|t→+∞ = A1t
−iλ/2 + B1

eiδ0t
2
t+iλ/2

t
+ O

(
1

t2

)
, (13)

u2|t→+∞ = B2
eiδ0t

2
t+iλ/2

t
+ O

(
1

t2

)
, (14)

A1 and B1,2 being (nonzero) constants. Since the Wronskian is W = W0 eiδ0t
2
, where W0 is a

constant, we have the following asymptotes for the integrands involved in equation (11):

u1(t)

W(t)
G(t)|t→+∞ = 1

4W0

[(
|A1|2A2

1t
−iλ e−iδ0t

2
+ A3

1B
∗
1 e−2iδ0t

2 t−2iλ

t

)

+
3|A1|2A1B1

t
+ O

(
1

t2

)]
, (15)

u2(t)

W(t)
G(t)|t→+∞ = 1

4W0

|A1|2A1B2

t
+ O

(
1

t2

)
. (16)

Hence, both integrals involved in equation (11) diverge logarithmically. As is immediately
seen, while the second term of equation (11) remains finite all the time due to the asymptote
of u2, the last term is divergent.

It is thus now suspected that this is purely related to phase effects which do not show
up when dealing with probabilities. One of the possibilities of checking this is to turn to an
equation involving only probability p. As a result we get differential equations of the third
order. For the particular case of the Landau–Zener model we are concerned with, the equation
for the molecular state reads

p′′′ − p′′

t
+ 4[t2 + λ(1 − 3p)]p′ +

λ

2t
(1 − 8p + 12p2) = 0. (17)

However, it can be verified that here we again face the same difficulties with divergences.
This means that we have to employ some other non-trivial perturbation techniques such as the
Krilov–Bogoliubov–Mitropolski averaging or the multiple-scale method which have proven
to be highly successful in treating numerous problems in many branches of physics and
mathematics [12]. This is actually the approach we used in [11]; but we should mention
that it is too complicated, since higher transcendental functions are involved because
equation (17) is of the third order.

Nevertheless, expressions (9) and (10) still suggest that, at least in the limit of weak
interaction, λ � 1, when the nonlinear term presents a weak regular perturbation [12], some
simpler perturbative approaches should be possible. In the next section we demonstrate that
this is, indeed, the case. We derive a nonlinear Volterra integral equation [13], equivalent to
equation (17), that allows one to avoid the divergence and to eventually construct uniformly
convergent series solution for the case of small λ. Notably, this reduction is possible for all the
analogous models with fixed field amplitude. Hence, this approach can be a general strategy
for attacking analogous nonlinear two-state problems. It is demonstrated that a simple formula
for the first correction term is derived and the final transition probability to the molecular state
for the Landau–Zener problem can be calculated.
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2. Nonlinear Volterra integral equation

Consider the case of constant field amplitude, U = U0 = const, and as a first step, turn to the
modulus and argument of the variables involved: a1(t) = r1(t) eiθ1(t) and a2(t) = r2(t) eiθ2(t).
Taking the square of the modulus of the second equation of system (1), we easily get the
following equation:(

dr2

dt

)2

+ r2
2

(
dθ2

dt

)2

= U 2
0

4

(
1 − 2r2

2

)2
. (18)

Denoting p = r2
2 and q = 2r2

2 dθ2/dt from equation (2) we can derive the following system:(
dp

dt

)2

+ q2 = U 2
0 (1 − 2p)2p,

dq

dt
= δt

dp

dt
. (19)

Compare this with the corresponding equations for the linear case:(
dp

dt

)2

+ q2 = U 2
0 (1 − 4p)p,

dq

dt
= δt

dp

dt
. (20)

(Note that equations (19) and (20) are rather convenient for generation of a number of exactly
solvable models for both linear and nonlinear problems. Some examples are presented in our
previous paper [14].)

After differentiation and some straightforward transformations, the first equation of (19)
can be changed to

d2q

dt2
− δtt

δt

dq

dt
+ δ2

t q = U 2
0 δt

2
(1 − 8p + 12p2). (21)

The general solution of the homogeneous equation (i.e. with the right-hand side equal to zero)
is easily found:

q = C1 cos(δ(t)) + C2 sin(δ(t)). (22)

The Wronskian q1q2t − q2q1t of the fundamental solutions q1 = cos(δ) and q2 = sin(δ) is
simply δt so that the general solution of the full inhomogeneous equation is written as

q = cos(δ(t))

(
C1 −

∫ t

−∞
sin(δ(x))

U 2
0

2
(1 − 8p + 12p2) dx

)

+ sin(δ(t))

(
C2 +

∫ t

−∞
cos(δ(x))

U 2
0

2
(1 − 8p + 12p2) dx

)
, (23)

where the argument of the integrand is changed to x. In the force of the relation
dq/dt = δt dp/dt , the differentiation of this equation leads to an integro-differential equation
for p, namely

dp

dt
= −C1 sin(δ) + C2 cos(δ) + cos(δ)

∫ t

−∞
cos(δ)

U 2
0

2
(1 − 8p + 12p2) dx

+ sin(δ)

∫ t

−∞
sin(δ)

U 2
0

2
(1 − 8p + 12p2) dx. (24)

Since we are searching for the solution satisfying the initial condition p(−∞) = 0, the
constants C1 and C2 actually vanish.

Thus the equation for the transition probability is

dp

dt
= U 2

0

2

{
cos(δ)

∫ t

−∞
cos(δ)(1 − 8p + 12p2) dx + sin(δ)

∫ t

−∞
sin(δ)(1 − 8p + 12p2) dx

}
.

(25)
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Of course, the same procedure can be performed with the linear system to derive an integral
equation where the terms proportional to p2 are missing.

Now, integrating equation (25) we get

p(t) = U 2
0

2

∫ t

−∞
cos(δ(x))

(∫ x

−∞
cos(δ(y))(1 − 8p(y) + 12p2(y)) dy

)
dx

+
U 2

0

2

∫ t

−∞
sin(δ(x))

(∫ x

−∞
sin(δ(y))(1 − 8p(y) + 12p2(y)) dy

)
dx. (26)

Finally, the integration by parts leads to a nonlinear Volterra integral equation [13],

p(t) = λ

2

∫ t

−∞
K(t, x)(1 − 8p(x) + 12p2(x)) dx, (27)

where λ is a ‘Landau–Zener parameter’ defined as λ = U 2
0 τ 2

0 (here τ0 is the time scale defined
by a scaling transformation t → τ0t ; in the case of the Landau–Zener model τ0 = 1/

√
δ0),

and the kernel, K(t, x), is given by

K(t, x) = (Cδ(t) − Cδ(x)) cos(δ(x)) + (Sδ(t) − Sδ(x)) sin(δ(x)), (28)

with functions Cδ and Sδ defined as

Cδ(t) =
∫ t

−∞
cos(δ(x)) dx, Sδ(t) =

∫ t

−∞
sin(δ(x)) dx. (29)

It can be readily shown by differentiation that the derived integral equation, (27), is equivalent
to the third-order differential equation (17).

Working out the first term of the integrand in (27) gives the following Volterra equation
of the second kind

p(t) = λ

4
f (t) − 4λ

∫ t

−∞
K(t, x)

(
p(x) − 3

2
p2(x)

)
dx, (30)

where f (t) involved in the forcing function [13] is given as

f (t) = C2
δ (t) + S2

δ (t). (31)

Now, if the forcing function, i.e., effectively, f (t), and the kernel, K(t, x), are bounded, one
may apply the Picard’s successive approximations,

p0 = λ

4
f (t), pn = λ

4
f (t) − 4λ

∫ t

−∞
K(t, x)

(
pn−1 − 3

2
p2

n−1

)
dx, n � 1, (32)

to construct a sequence of functions pn(t), which, according to the general theory (see, e.g.,
[13]), converges uniformly everywhere to a limit function p(t) that is the unique solution to
equation (30). Since the conditions used are quite general, the Volterra integral equation (27)
or (30) may provide a systematic way to attack the nonlinear system (1) in the case of small
enough Landau–Zener parameter λ.

However, the convergence of Picard’s series (32) is very slow. To demonstrate this,
note that by rearrangement of the terms the Picard’s solution can be presented as a power
series expansion in λ. This expansion accounts for the orders of the involved terms explicitly.
Substituting p = p0 + λp1 + λ2p2 + · · · into equation (27) and equating coefficients at the
same powers of λ we get p0 = 0 and, successively,

λ : p1 = 1

2

∫ t

−∞
K(t, x) dx, λ2 : p2 = 1

2

∫ t

−∞
K(t, x)(−8p1) dx, (33)

λ3 : p3 = 1

2

∫ t

−∞
K(t, x)

( − 8p2 + 12p2
1

)
dx, . . . . (34)
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(Of course, λp1 is the forcing function of the Volterra equation (30): p1 = [
C2

δ (t) + S2
δ (t)

]/
4 =

f (t)/4.) Now, since all the pi tend to finite, in general nonzero values at t → +∞, it
is understood that any finite sum, being a polynomial in λ, is not restricted at λ → ∞.
Furthermore, it can even take negative values. For instance, for the Landau–Zener model
p1 = f (t)/4 → π/4 at t → +∞ so that λp1 starting from λ ≈ 0.65 already exceeds the
maximum 1/2 allowed by the normalization (3), and the next approximation, λp1 + λ2p2,
becomes less than zero when λ > 0.65.

Thus another approach is preferred. Note first that p0, p1 and p2 satisfy the same equations
as the corresponding terms of the expansion in the linear case. Hence, we are lead to apply
to the initial integral equation (27) the substitution p = pL + u, pL being the scaled linear
solution (i.e., the linear solution with normalization IL = 1/4). Then we have

pL + u = λ

2

∫ t

−∞
K(t, x)[1 − 8(pL + u) + 12(pL + u)2(x)] dx. (35)

Cancelling the terms belonging to the linear problem leads to a new Volterra integral equation
of Hammerstein type [13],

u = 6λ

∫ t

−∞
K(t, x)p2

L dx − 4λ

∫ t

−∞
K(t, x)

[
(1 − 3pL)u − 3

2
u2

]
dx, (36)

with changed forcing function that is of the order of λ3. It is then understood that this forcing
function should lead to much faster converging approximations. Indeed, try now an expansion
of the form

u = u0 + λu1 + λ2u2 + λ3u3 + · · · . (37)

Since pL ∼ λ at small λ, we conclude that u0 = u1 = u2 = 0. For the next term, however,
we get an important result:

λ3u3 = 6λ

∫ t

−∞
K(t, x)p2

L dx. (38)

Noting that u = λ3u3 + O(λ4), we finally arrive at a principal result:

u ≈ 6λ

∫ t

−∞
K(t, x)p2

L dx. (39)

This is the desired form of the first correction term. Thus, finally, we obtain that in the first
approximation the solution to the nonlinear problem in the weak interaction regime is written
as

p(t) = pL(t) + 6λ

∫ t

−∞
K(t, x)[pL(x)]2 dx. (40)

This is numerically proven to be a good approximation. For the Landau–Zener model,
up to λ < 0.5 the comparison with the numerical solution to system (1) gives practically
indistinguishable graphs. And it also works well as a first approximation even up to λ � 1.

3. Landau–Zener model: final transition probability

Consider the Landau–Zener model:

δ = δ0t
2. (41)

The natural time scale here is τ0 = 1/
√

δ0 so that λ becomes the conventional Landau–Zener
parameter: λ = U 2

0

/
δ0. Functions Cδ(t) and Sδ(x) get the form

Cδ(t) =
√

π

2δ0

[
1

2
+ C

(√
2δ0

π
t

)]
, Sδ(t) =

√
π

2δ0

[
1

2
+ S

(√
2δ0

π
t

)]
, (42)
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with C and S being the Fresnel functions [9] defined as

C(x) =
∫ x

0
cos

(π

2
ξ 2

)
dξ, S(x) =

∫ x

0
sin

(π

2
ξ 2

)
dξ. (43)

Interestingly, the forcing function of the Volterra equation (30) then becomes a prominent
function from the theory of light diffraction:

f (t) = π

2δ0




[
1

2
+ C

(√
2δ0

π
t

)]2

+

[
1

2
+ S

(√
2δ0

π
t

)]2

 . (44)

As is well known, this function defines the light intensity behind a semi-infinite opaque wall,
t playing then the role of the lateral distance from the end of the wall [15].

Let us now calculate the final transition probability in the limit t → ∞:

p(+∞) = pLZ(+∞)

4
+ u(+∞), u(+∞) = 6λ

∫ +∞

−∞

[(√
π

2
− Cδ(x)

)
cos δ(x)

+

(√
π

2
− Sδ(x)

)
sin δ(x)

]
[pL(x)]2 dx. (45)

Since the correction term u is of the order of λ3, we first can get an initial estimate by means
of replacing pL by λp1 = λf (t)/4. In this case we obtain that at infinity

p(+∞) = pL(+∞) + λ3

(
−π3

16
+

3

8

√
π

2
IG

)
,

IG =
∫ +∞

−∞
(cos(δ0x

2) + sin(δ0x
2))

(
C2

δ (x) + S2
δ (x)

)2
dx.

(46)

Numerical integration results in IG = 5.8412, so that we have

p(+∞) = PLZ

4
+ u(+∞) ≈

PLZ

4
+ 0.80743λ3. (47)

As an initial approximation, this expression well confirms the result of [11], formula (9).
Indeed, the latter leads to

p(+∞) = PLZ

4
+

π

4
λ3 + O(λ4). (48)

So, already in this approximation the difference is quite small: 0.80743 − π/4 ≈ 0.022.
However, the result can be essentially improved. This can be done by noting that the

linear solution pL involved in the integral in (45) can be well approximated by a formula of
the form:

pL(t) ≈

PLZ

4
fL(t), (49)

where the function fL(t) does not depend on λ. The form of this function can be established
from equation (17) as follows. Substituting p = PfinalfL(t), where Pfinal is the final transition
probability at t → +∞, into equation (17) and then dividing it by Pfinal one obtains

f ′′′
L − f ′′

L

t
+ [4t2 + 4λ(1 − 3PfinalfL)]f ′

L +
λ

2t

(
1

Pfinal
− 8fL + 12

Pfinal

4
f 2

L

)
= 0. (50)

Now we take the limit λ → 0 keeping in mind that λ/Pfinal ≈ λ/(PLZ/4) = 4λ/(1− e−πλ) →
4/π to derive an equation for the limit function fL(t):

f ′′′
L − f ′′

L

t
+ 4t2f ′

L +
2

πt
= 0. (51)
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Figure 3. The behaviour of the integrand in formula (48).

The particular solution to this equation subject to the initial conditions considered here is

fL(t) = −1

4
+

4(Cδ + Sδ)

π2
+

t2

2π
[2F2(1, 1; 3/2, 2; +it2) + 2F2(1, 1; 3/2, 2;−it2)]. (52)

Inserting now equation (49) into equation (45) gives

p(+∞) = PLZ

4
+ λ

(
PLZ

4

)2

I, (53)

where

I = 6
∫ +∞

−∞

[(√
π

2
− Cδ(x)

)
cos δ(x) +

(√
π

2
− Sδ(x)

)
sin δ(x)

]
[fL(x)]2 dx. (54)

The form of the integrand is shown in figure 3. As is immediately seen, the integrand
effectively differs from zero only in a small interval near the origin. Though the analytic
treatment here is straightforward, say, by using series expansions at the origin, it can be just
calculated numerically since the integral is simply a number. The result is I = 1.3317 ≈ 4/3.
Direct simulations using the very linear Landau–Zener solution further improve the result to
give I = 1.3082 to stand for I in (53), whereby we confirm the result (9) of [11] which reads
I = 4/π ≈ 1.2732. The derived formula (53) with the last number well agrees with the
numerical solution: up to λ ≈ 0.4 the relative error is less than 10−3.

4. Summary

We have presented an analysis of a nonlinear version of the Landau–Zener problem that arises in
different physical situations, e.g., in photoassociation of an atomic Bose–Einstein condensate,
in controlling the scattering length of an atomic condensate by means of a Feshbach resonance,
in second-harmonic generation, and generally in field theories with a cubic nonlinearity. We
have shown that the governing equations can be reduced to the nonlinear Volterra equation that
allows one to avoid the divergence problems which appear in the conventional perturbative
approach. This equation allows one to construct uniformly convergent series solution for the
case of small Landau–Zener parameter involved. We have derived the first correction term to
the zeroth-order solution and have calculated the final transition probability for this case of
weak interaction for the Landau–Zener model.
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Notably, the reduction of the initial nonlinear two-state problem to the Volterra nonlinear
integral equation is not restricted to the particular Landau–Zener problem treated here, but
is the case for all the models with constant field amplitude. Furthermore, due to the above-
mentioned class property of the solutions of the considered system, this reduction can be
extended to the most of the possible models as well. Hence, the developed approach is a
very general strategy for attacking analogous nonlinear two-state problems. Different useful
models well known from standard linear theory are subject to treatment using this method.
Of first interest could be the second Demkov–Kunike model [16] and the quadratic potential
or double crossing model proven to be very helpful both in basic theory and in numerous
important applications [6, 17]. The latter model in the linear version was solved by Zhu
and Nakamura [18]. We would also like to mention possible three-mode and, generally,
multi-mode extensions aggregating another block of problems attracting attention. Finally,
an important further development could be the extension of the presented approach to the
analogous models for systems including nonlinear terms associated with atom–atom, atom–
molecule and molecule–molecule interactions. Such systems have recently gained much
attention by various authors [4, 19, 20].
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